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Abstract

Here I provide the proof of the sums of two squares statement. I wrote this as part of my Number
Theory final project. The proof provided here is by-and-large based on the proof given by Dudley. I
reorganized his proof in a way that made it easier (for me) to understand, elaborated and filled in areas
which Dudley left to the reader.

Theorem 0.1. n cannot be written as the sum of two squares if and only if the prime-power decomposition
of n contains a prime congruent to 3 (mod 4) to an odd power.

Before beginning the proof, we will start with five lemmas.

Lemma 0.2. 2 is representable.

Proof. 2 = 12 + 12

Lemma 0.3. The product of two representable numbers is representable.

Proof. (a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2 for any integers a, b, c, and d.

Lemma 0.4. If n is representable, then so is k2n for any k

Proof. If n = a2 + b2, then k2n = (ka)2 + (kb)2

Lemma 0.5. Any integer n can be written in the form

n = k2p1p2 · · · pr, (0.1)

where each pi is a distinct prime and k is unique.

Proof. Let the prime factorization of n be

n = pe11 pe22 · · · penn (0.2)

Define the index sets I = {i|1 ≤ i ≤ n, ei is even} and J = {i|1 ≤ i ≤ n, ei is odd}. The decomposition is

n =

(∏
i∈I

peii

)(∏
i∈J

peii

)
(0.3)

For ei even, say ei = 2fi (fi ≥ 1) and if ei is odd, say ei = 2fi + 1 (fi ≥ 0). Then by rearranging we can
produce

=

(∏
i∈I

p2fii

)(∏
i∈J

p2fi+1
i

)
(0.4)

=

(
n∏

i=1

p2fii

)(∏
i∈J

pi

)
(0.5)

=

(
n∏

i=1

pfii

)2(∏
i∈J

pi

)
(0.6)
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Then we can relabel the first product as k and the second project p1 · · · pr. To show uniqueness, let there
be two decompositions:

n = k21p1p2 · · · pr = k22q1q2 · · · qs (0.7)

with pi, qi prime. k21|n but k1 ̸ |q1q2 · · · qs, since no square divides q1q2 · · · qs. Therefore k1|k2. By the same
logic, k2|k1, so k1 = k2.

Lemma 0.6. If is an odd prime, then(
−1

p

)
=

{
1 p ≡ 1 (mod 4)

−1 p ≡ 3 (mod 4).
(0.8)

Proof. Euler’s criterion states (
−1

p

)
= (−1)

p−1
2 . (0.9)

If p ≡ 1 (mod 4) then (p − 1)/2 is even and
(

−1
p

)
= 1. If p ≡ 3 (mod 4) then (p − 1)/2 is odd and(

−1
p

)
= −1.

Using the above lemmas, we can decompose the forward and backward directions of 0.1 into two
statements.

Theorem 0.7. (Equivalent to the forward direction of Theorem 0.1.) Suppose n = k2p1p2 · · · pr. If any of
p1 . . . pr ≡ 3 (mod 4), then n is not representable.

Remark 1. (On Theorem 0.7’s equivalence to the forward direction.) If n = k2p1p2 · · · pr, and some pi ≡ 3
(mod 4), then either pi|k or pi ̸ |k. If pi ̸ |k then the conditions for Theorem 0.7 with the prime power being

one. If pi|k, then say pfi ||k, then the conditions for Theorem 0.7 are satisfied with the prime power being
2f + 1. So Theorem 0.7 implies the forward direction of Theorem 0.1.

Theorem 0.8. (Equivalent to the backward direction of Theorem 0.1.) For prime p, p is representable if
p = 2 or p ≡ 1 (mod 4).

Remark 2. (On Theorem 0.8’s equivalence to the backward direction.) If n = k2p1p2 · · · pr with all
p1...pr = 2 or ≡ 1 (mod 4), then by 0.8, each pi is representable. By 0.3, p1p2 · · · pr is representable and
by 0.4, n is representable. Therefore Theorem 0.8 implies (the contrapositive of) the backwards direction of
Theorem 0.1.

Now all we have to do is prove Theorems 0.7 and 0.8

Proof. (of Theorem 0.7). Let n = k2p1p2 · · · pr and suppose without loss of generality that p1 = 3 (mod 4).
Suppose for a contradiction that n = x2 + y2. Then define d = (x, y), x1 = x/d, y1 = y/d, and n1 = n/d2.
Then n1 = x2

1+y21 . If d ̸= 1, then d2 ̸ |pi for any pi (since d
2 is a square, its prime factorization must contain

a square), so d2 must divide k2, so (k/d)2 is an integer, n1 = (k/d)2p1p2 · · · pr.
If p1|x1, then p21|x2

1. Since p1|n1, that implies p1|y21 , which could only be true if p21|y21 . But that would
imply p21|n1, which is not true. Therefore p1 ̸ |x1. That means there is a solution u to the congruence

x1u = y1 (mod p1). (0.10)

Thus,
0 ≡ n1 ≡ x2

1 + y21 ≡ x2
1 + (ux1)

2 ≡ x2
1(1 + u2) (mod p1) (0.11)

And since p1 ̸ |x1, we can cancel out x2
1.

1 + u2 ≡ 0 (mod p1) (0.12)

u2 ≡ −1 (mod p1) (0.13)

But this is a contradiction, as by Lemma 0.6, −1 does not have a quadratic residue mod p.
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Proof. (of Theorem 0.8). The case p = 2 was shown in Lemma 0.2. Let p be a prime with p ≡ 1 (mod 4).
The proof works by infinite descent. We first show that there is a solution an equation of the form

x2 + y2 = kp, (0.14)

k ≥ 1. Then we will show that if k > 1, we can find some k1 < k and solution x1, y1 with

x2
1 + y21 = k1p. (0.15)

Therefore a chain of ki’s could be constructed until arriving at kr = 1, creating a solution.
Step 1. By 0.6, −1 has a quadratic residue and there is a solution u to

u2 ≡ −1 (mod p) (0.16)

u2 + 1 ≡ 0 (mod p) (0.17)

u2 + 12 = kp (0.18)

for some k. Take u to be the least residue, 0 ≤ u ≤ p− 1. Then u2 + 1 ≤ p2 − 2p, so kp ≤ p2 − 2p, and we
get the inequality

1 ≤ k ≤ p− 2 (0.19)

This equation will be important later and it is important to note that since k decreases with each step, it
holds with every step.

Step 2. Now we construct x1 and y1. First define r, s by the unique solutions to

r ≡x (mod k) − k

2
< r ≤ k

2
(0.20)

s ≡y (mod k) − k

2
< s ≤ k

2
(0.21)

Therefore,
r2 + s2 ≡ x2 + y2 ≡ 0 (mod k). (0.22)

Or
r2 + s2 = k1k (0.23)

Now we can combine this with equation (0.14) to produce(
r2 + s2

) (
x2 + y2

)
= (k1k)(kp) = k1k

2p. (0.24)

By rearrangement similar to Lemma 0.3,

(rx+ sy)
2
+ (ry − sx)

2
= k1k

2p (0.25)

Notice that from (0.20),

rx+ sy ≡r2 + s2 ≡ 0 (mod k) (0.26)

ry − sx ≡rs− sr ≡ 0 (mod k) (0.27)

k2 divides each term. We can produce the integer equation(
rx+ sy

k

)2

+

(
ry − sx

k

)2

= k1p. (0.28)

We have produced values

x1 =
rx+ sy

k
(0.29)

y1 =
ry − sx

k
(0.30)
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We now need to show that k1 < k and k1 ̸= 0. (0.23) and the inequalities from (0.20) show that

k1k = r2 + s2 ≤
(
k

2

)2

+

(
k

2

)2

=
k2

2
(0.31)

k1 ≤k

2
(0.32)

If k1 = 0, then from (0.23), r = s = 0. Then we would have from (0.20) that k|x and k|y. Then from (0.14)
we would get that k2|kp, k|p. Either k = 1 (in which case we have reached a solution), or k = p, but this is
explicitly ruled out (0.19). This completes the proof.

Remark 3. The proof of Theorem 0.8, and of Lemmas 0.3 and 0.4 are constructive, so provide a method
to find any solution x2 + y2 = n, if n is representable.
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