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Abstract

Here I provide the proof of the sums of two squares statement. I wrote this as part of my Number
Theory final project. The proof provided here is by-and-large based on the proof given by Dudley. I
reorganized his proof in a way that made it easier (for me) to understand, elaborated and filled in areas
which Dudley left to the reader.

Theorem 0.1. n cannot be written as the sum of two squares if and only if the prime-power decomposition
of n contains a prime congruent to 3 (mod 4) to an odd power.

Before beginning the proof, we will start with five lemmas.
Lemma 0.2. 2 is representable.
Proof. 2 =12 412 O
Lemma 0.3. The product of two representable numbers is representable.
Proof. (a? +b?)(c? + d?) = (ac + bd)? + (ad — bc)? for any integers a, b, ¢, and d. O
Lemma 0.4. If n is representable, then so is k*n for any k
Proof. If n = a® + b2, then k?n = (ka)? + (kb)? O
Lemma 0.5. Any integer n can be written in the form

n=kpips---pr, (0.1)
where each p; is a distinct prime and k is unique.
Proof. Let the prime factorization of n be

n=pypy Py (0.2)

Define the index sets I = {i|l <i<n, e; is even} and J = {i|l <i <n, e; is odd}. The decomposition is
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For e; even, say e; = 2f; (f; > 1) and if e; is odd, say e; = 2f; + 1 (f; > 0). Then by rearranging we can
produce
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Then we can relabel the first product as k& and the second project p; - - - p.. To show uniqueness, let there
be two decompositions:

n=kpps - pr=k3qq - g (0.7)

with p;, ¢; prime. k?|n but k1 Jqi1q2 - - - ¢s, since no square divides q1qs - - - gs. Therefore ky|ke. By the same
logic, kalki, so k1 = ka. O

Lemma 0.6. If is an odd prime, then
-1 1 =1 d4
D —1 p=3 (mod4).

-1 p—1
() — () (0.9)
If p =1 (mod4) then (p — 1)/2 is even and (_71 . If p =3 (mod 4) then (p — 1)/2 is odd and
—1 _
(54) =1 0

Using the above lemmas, we can decompose the forward and backward directions of 0.1 into two
statements.

Proof. Euler’s criterion states

—
Il
—

Theorem 0.7. (Equivalent to the forward direction of Theorem 0.1.) Suppose n = k*pips - - - p.. If any of
p1...pr =3 (mod 4), then n is not representable.

Remark 1. (On Theorem 0.7’s equivalence to the forward direction.) If n = k*pips - - - p,, and some p; = 3
(mod 4), then either p;|k or p; fk. If p; [k then the conditions for Theorem 0.7 with the prime power being
one. If p;|k, then say p{Hk, then the conditions for Theorem 0.7 are satisfied with the prime power being
2f + 1. So Theorem 0.7 implies the forward direction of Theorem 0.1.

Theorem 0.8. (Equivalent to the backward direction of Theorem 0.1.) For prime p, p is representable if
p=2orp=1 (mod 4).

Remark 2. (On Theorem 0.8’s equivalence to the backward direction.) If n = k?pips - - - p, with all
p1.pr = 2 or =1 (mod 4), then by 0.8, each p; is representable. By 0.3, p1ps - - - p, is representable and
by 0.4, n is representable. Therefore Theorem 0.8 implies (the contrapositive of ) the backwards direction of
Theorem 0.1.

Now all we have to do is prove Theorems 0.7 and 0.8

Proof. (of Theorem 0.7). Let n = k?p;ps - - - p, and suppose without loss of generality that p; = 3 (mod 4).
Suppose for a contradiction that n = 22 + y?. Then define d = (z,v), v1 = z/d, y1 = y/d, and n; = n/d>.
Then ny = 23 +y3. If d # 1, then d? [p; for any p; (since d? is a square, its prime factorization must contain
a square), so d? must divide k2, so (k/d)? is an integer, ny = (k/d)?p1p2 - - - py-

If p1|x1, then p?|a?. Since pi|ni, that implies p;|y?, which could only be true if p?|y?. But that would
imply p?|n1, which is not true. Therefore p; fr;. That means there is a solution u to the congruence

z1u =7y (mod py). (0.10)
Thus,
=n =22 +yl =22 + (ur))?* = 23(1 +4?) (mod py) (0.11)
And since p; Jr1, we can cancel out z2.
1+u?=0 (mod p)) (0.12)
u?=—1 (mod p;) (0.13)
But this is a contradiction, as by Lemma 0.6, —1 does not have a quadratic residue mod p. O



Proof. (of Theorem 0.8). The case p = 2 was shown in Lemma 0.2. Let p be a prime with p =1 (mod 4).
The proof works by infinite descent. We first show that there is a solution an equation of the form

2? +y? = kp, (0.14)
k > 1. Then we will show that if £ > 1, we can find some k; < k and solution z1, y; with
2+ yf = . (0.15)

Therefore a chain of k;’s could be constructed until arriving at k, = 1, creating a solution.
Step 1. By 0.6, —1 has a quadratic residue and there is a solution u to

u?=—1 (mod p) (0.16)
u?4+1=0 (mod p) (0.17)
u? +12 =kp (0.18)

for some k. Take u to be the least residue, 0 < u < p — 1. Then u? + 1 < p? — 2p, so kp < p? — 2p, and we
get the inequality
1<k<p-2 (0.19)

This equation will be important later and it is important to note that since k decreases with each step, it
holds with every step.
Step 2. Now we construct x; and y;. First define r, s by the unique solutions to

k k
r=z (mod k) —5<r < 5 (0.20)
k k
s=y (mod k) —5<s < 5 (0.21)
Therefore,
r?4+s2=22+9y*=0 (mod k). (0.22)
Or
r? 452 = kk (0.23)
Now we can combine this with equation (0.14) to produce
(r* +5%) (2* + y?) = (k1k)(kp) = k1 k>p. (0.24)
By rearrangement similar to Lemma 0.3,
(rz + sy)® + (ry — sz)® = k1 k?p (0.25)
Notice that from (0.20),
re+sy=r’+s>=0 (mod k) (0.26)
ry—sx=rs—sr=0 (mod k) (0.27)
k? divides each term. We can produce the integer equation
2 2
T+ Sy n Y — ST — kip. (0.28)
k k
We have produced values
1 :@ (0.29)
rY — ST
y =" (0.30)



We now need to show that k1 < k and k; # 0. (0.23) and the inequalities from (0.20) show that

bk — 1% 4 s k( ) ( ) :%2 (0.31)
2

(0.32)
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If ky = 0, then from (0.23), » = s = 0. Then we would have from (0.20) that k|x and k|y. Then from (0.14)
we would get that k?|kp, k|p. Either £ =1 (in which case we have reached a solution), or k = p, but this is
explicitly ruled out (0.19). This completes the proof. O

Remark 3. The proof of Theorem 0.8, and of Lemmas 0.3 and 0.4 are constructive, so provide a method

to find any solution x> + y?> = n, if n is representable.
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