An investigation into sums of squares

Daniel Coble

December 11, 2023

Abstract

Here I provide the proof of the sums of two squares statement. I wrote this as part of my Number Theory final project. The proof provided here is by-and-large based on the proof given by Dudley. I reorganized his proof in a way that made it easier (for me) to understand, elaborated and filled in areas which Dudley left to the reader.

Theorem 0.1. n cannot be written as the sum of two squares if and only if the prime-power decomposition of n contains a prime congruent to 3 (mod 4) to an odd power.

Before beginning the proof, we will start with five lemmas.

Lemma 0.2. 2 is representable.

Proof.
$$
2 = 1^2 + 1^2
$$

Lemma 0.3. The product of two representable numbers is representable.

Proof. $(a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2$ for any integers a, b, c, and d. \Box

Lemma 0.4. If n is representable, then so is k^2n for any k

Proof. If
$$
n = a^2 + b^2
$$
, then $k^2n = (ka)^2 + (kb)^2$

Lemma 0.5. Any integer n can be written in the form

$$
n = k^2 p_1 p_2 \cdots p_r,\tag{0.1}
$$

where each p_i is a distinct prime and k is unique.

Proof. Let the prime factorization of n be

$$
n = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}
$$
 (0.2)

Define the index sets $I = \{i | 1 \le i \le n, e_i \text{ is even}\}\$ and $J = \{i | 1 \le i \le n, e_i \text{ is odd}\}\.$ The decomposition is

$$
n = \left(\prod_{i \in I} p_i^{e_i}\right) \left(\prod_{i \in J} p_i^{e_i}\right) \tag{0.3}
$$

For e_i even, say $e_i = 2f_i$ $(f_i \ge 1)$ and if e_i is odd, say $e_i = 2f_i + 1$ $(f_i \ge 0)$. Then by rearranging we can produce

$$
= \left(\prod_{i\in I} p_i^{2f_i}\right) \left(\prod_{i\in J} p_i^{2f_i+1}\right) \tag{0.4}
$$

$$
= \left(\prod_{i=1}^{n} p_i^{2f_i}\right) \left(\prod_{i \in J} p_i\right) \tag{0.5}
$$

$$
= \left(\prod_{i=1}^{n} p_i^{f_i}\right)^2 \left(\prod_{i \in J} p_i\right) \tag{0.6}
$$

Then we can relabel the first product as k and the second project $p_1 \cdots p_r$. To show uniqueness, let there be two decompositions:

$$
n = k_1^2 p_1 p_2 \cdots p_r = k_2^2 q_1 q_2 \cdots q_s \tag{0.7}
$$

with p_i, q_i prime. $k_1^2 | n$ but $k_1 \nvert q_1 q_2 \cdots q_s$, since no square divides $q_1 q_2 \cdots q_s$. Therefore $k_1 | k_2$. By the same logic, $k_2|k_1$, so $k_1 = k_2$. \Box

Lemma 0.6. If is an odd prime, then

$$
\left(\frac{-1}{p}\right) = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4}. \end{cases}
$$
 (0.8)

Proof. Euler's criterion states

$$
\left(\frac{-1}{p}\right) = \left(-1\right)^{\frac{p-1}{2}}.\tag{0.9}
$$

If $p \equiv 1 \pmod{4}$ then $(p-1)/2$ is even and $\left(\frac{-1}{p}\right) = 1$. If $p \equiv 3 \pmod{4}$ then $(p-1)/2$ is odd and $\left(\frac{-1}{p}\right) = -1.$ \Box

Using the above lemmas, we can decompose the forward and backward directions of [0.1](#page-0-0) into two statements.

Theorem 0.7. (Equivalent to the forward direction of Theorem [0.1.](#page-0-0)) Suppose $n = k^2 p_1 p_2 \cdots p_r$. If any of $p_1 \dots p_r \equiv 3 \pmod{4}$, then n is not representable.

Remark 1. (On Theorem [0.7'](#page-1-0)s equivalence to the forward direction.) If $n = k^2 p_1 p_2 \cdots p_r$, and some $p_i \equiv 3$ (mod 4), then either $p_i|k$ or $p_i \nparallel k$. If $p_i \nparallel k$ then the conditions for Theorem [0.7](#page-1-0) with the prime power being one. If $p_i|k$, then say $p_i^f||k$, then the conditions for Theorem [0.7](#page-1-0) are satisfied with the prime power being $2f + 1$. So Theorem [0.7](#page-1-0) implies the forward direction of Theorem [0.1.](#page-0-0)

Theorem 0.8. (Equivalent to the backward direction of Theorem [0.1.](#page-0-0)) For prime p, p is representable if $p = 2$ or $p \equiv 1 \pmod{4}$.

Remark 2. (On Theorem [0.8'](#page-1-1)s equivalence to the backward direction.) If $n = k^2 p_1 p_2 \cdots p_r$ with all $p_1...p_r = 2$ or $\equiv 1 \pmod{4}$, then by [0.8,](#page-1-1) each p_i is representable. By [0.3,](#page-0-1) $p_1p_2 \cdots p_r$ is representable and by [0.4,](#page-0-2) n is representable. Therefore Theorem [0.8](#page-1-1) implies (the contrapositive of) the backwards direction of Theorem [0.1.](#page-0-0)

Now all we have to do is prove Theorems [0.7](#page-1-0) and [0.8](#page-1-1)

Proof. (of Theorem [0.7\)](#page-1-0). Let $n = k^2 p_1 p_2 \cdots p_r$ and suppose without loss of generality that $p_1 = 3 \pmod{4}$. Suppose for a contradiction that $n = x^2 + y^2$. Then define $d = (x, y)$, $x_1 = x/d$, $y_1 = y/d$, and $n_1 = n/d^2$. Then $n_1 = x_1^2 + y_1^2$. If $d \neq 1$, then d^2 / p_i for any p_i (since d^2 is a square, its prime factorization must contain a square), so d^2 must divide k^2 , so $(k/d)^2$ is an integer, $n_1 = (k/d)^2 p_1 p_2 \cdots p_r$.

If $p_1|x_1$, then $p_1^2|x_1^2$. Since $p_1|n_1$, that implies $p_1|y_1^2$, which could only be true if $p_1^2|y_1^2$. But that would imply $p_1^2|n_1$, which is not true. Therefore $p_1 \nvert x_1$. That means there is a solution u to the congruence

$$
x_1 u = y_1 \pmod{p_1}.\tag{0.10}
$$

Thus,

$$
0 \equiv n_1 \equiv x_1^2 + y_1^2 \equiv x_1^2 + (ux_1)^2 \equiv x_1^2(1 + u^2) \pmod{p_1}
$$
\n
$$
(0.11)
$$

And since $p_1 \nvert x_1$, we can cancel out x_1^2 .

$$
1 + u^2 \equiv 0 \pmod{p_1} \tag{0.12}
$$

$$
u^2 \equiv -1 \pmod{p_1} \tag{0.13}
$$

 \Box But this is a contradiction, as by Lemma $0.6, -1$ does not have a quadratic residue mod p.

Proof. (of Theorem [0.8\)](#page-1-1). The case $p = 2$ was shown in Lemma [0.2.](#page-0-3) Let p be a prime with $p \equiv 1 \pmod{4}$. The proof works by infinite descent. We first show that there is a solution an equation of the form

$$
x^2 + y^2 = kp,\tag{0.14}
$$

 $k \geq 1$. Then we will show that if $k > 1$, we can find some $k_1 < k$ and solution x_1, y_1 with

$$
x_1^2 + y_1^2 = k_1 p. \tag{0.15}
$$

Therefore a chain of k_i 's could be constructed until arriving at $k_r = 1$, creating a solution.

Step 1. By [0.6,](#page-1-2) -1 has a quadratic residue and there is a solution u to

$$
u^2 \equiv -1 \pmod{p} \tag{0.16}
$$

$$
u^2 + 1 \equiv 0 \pmod{p} \tag{0.17}
$$

$$
u^2 + 1^2 = kp \tag{0.18}
$$

for some k. Take u to be the least residue, $0 \le u \le p-1$. Then $u^2 + 1 \le p^2 - 2p$, so $kp \le p^2 - 2p$, and we get the inequality

$$
1 \le k \le p - 2 \tag{0.19}
$$

This equation will be important later and it is important to note that since k decreases with each step, it holds with every step.

Step 2. Now we construct x_1 and y_1 . First define r, s by the unique solutions to

$$
r \equiv x \pmod{k} \qquad -\frac{k}{2} < r \le \frac{k}{2} \tag{0.20}
$$

$$
s \equiv y \pmod{k} \qquad -\frac{k}{2} < s \le \frac{k}{2} \tag{0.21}
$$

Therefore,

$$
r^2 + s^2 \equiv x^2 + y^2 \equiv 0 \pmod{k}.
$$
 (0.22)

Or

$$
r^2 + s^2 = k_1 k \tag{0.23}
$$

Now we can combine this with equation [\(0.14\)](#page-2-0) to produce

$$
(r2 + s2) (x2 + y2) = (k1k)(kp) = k1k2p.
$$
 (0.24)

By rearrangement similar to Lemma [0.3,](#page-0-1)

$$
(rx + sy)2 + (ry - sx)2 = k1k2p
$$
\n(0.25)

Notice that from [\(0.20\)](#page-2-1),

$$
rx + sy \equiv r^2 + s^2 \equiv 0 \pmod{k} \tag{0.26}
$$

$$
ry - sx \equiv rs - sr \equiv 0 \pmod{k} \tag{0.27}
$$

 $k²$ divides each term. We can produce the integer equation

$$
\left(\frac{rx+sy}{k}\right)^2 + \left(\frac{ry-sx}{k}\right)^2 = k_1p.\tag{0.28}
$$

We have produced values

$$
x_1 = \frac{rx + sy}{k} \tag{0.29}
$$

$$
y_1 = \frac{ry - sx}{k} \tag{0.30}
$$

We now need to show that $k_1 < k$ and $k_1 \neq 0$. [\(0.23\)](#page-2-2) and the inequalities from [\(0.20\)](#page-2-1) show that

$$
k_1 k = r^2 + s^2 \le \left(\frac{k}{2}\right)^2 + \left(\frac{k}{2}\right)^2 = \frac{k^2}{2}
$$
 (0.31)

$$
k_1 \le \frac{k}{2} \tag{0.32}
$$

If $k_1 = 0$, then from [\(0.23\)](#page-2-2), $r = s = 0$. Then we would have from [\(0.20\)](#page-2-1) that $k|x$ and $k|y$. Then from [\(0.14\)](#page-2-0) we would get that $k^2|kp, k|p$. Either $k = 1$ (in which case we have reached a solution), or $k = p$, but this is explicitly ruled out [\(0.19\)](#page-2-3). This completes the proof. \Box

Remark 3. The proof of Theorem [0.8,](#page-1-1) and of Lemmas [0.3](#page-0-1) and [0.4](#page-0-2) are constructive, so provide a method to find any solution $x^2 + y^2 = n$, if n is representable.

References

[1] U. Dudley, *Elementary number theory*, Courier Corporation, 2012.